The Death and Life of an Admissions Algorithm
In 2013, the University of Texas at Austin’s computer science department began using a machine-learning system called GRADE to help make decisions about who gets into its Ph.D. program -- and who doesn’t. This year, the department abandoned it.
Before the announcement, which the department released in the form of a tweet reply, few had even heard of the program. Now, its critics -- concerned about diversity, equity and fairness in admissions -- say it should never have been used in the first place.
“Humans code these systems. Humans are encoding their own biases into these algorithms,” said Yasmeen Musthafa, a Ph.D. student in plasma physics at the University of California, Irvine, who rang alarm bells about the system on Twitter. “What would UT Austin CS department have looked like without GRADE? We’ll never know.”
GRADE (which stands for GRaduate ADmissions Evaluator) was created by a UT faculty member and UT graduate student in computer science, originally to help the graduate admissions committee in the department save time. GRADE predicts how likely the admissions committee is to approve an applicant and expresses that prediction as a numerical score out of five. The system also explains what factors most impacted its decision.
The UT researchers who made GRADE trained it on a database of past admissions decisions. The system uses patterns from those decisions to calculate its scores for candidates.
For example, letters of recommendation containing the words “best,” “award,” “research” or “Ph.D.” are predictive of admission -- and can lead to a higher score -- while letters containing the words “good,” “class,” “programming” or “technology” are predictive of rejection. A higher grade point average means an applicant is more likely to be accepted, as does the name of an elite college or university on the résumé. Within the system, institutions were encoded into the categories “elite,” “good” and “other,” based on a survey of UT computer science faculty.
Every application GRADE scored during the seven years it was in use was still reviewed by at least one human committee member, UT Austin has said, but sometimes only one. Before GRADE, faculty members made multiple review passes over the pool. The system saved the committee time, according to its developers, by allowing faculty to focus on applicants on the cusp of admission or rejection and review applicants in descending order of quality...
Read the complete article here.